3.590 \(\int \frac{(a+b \sin ^{-1}(c x))^2}{x^2 \sqrt{d+c d x} \sqrt{e-c e x}} \, dx\)

Optimal. Leaf size=214 \[ -\frac{i b^2 c \sqrt{1-c^2 x^2} \text{PolyLog}\left (2,e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt{c d x+d} \sqrt{e-c e x}}-\frac{\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt{c d x+d} \sqrt{e-c e x}}-\frac{i c \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{c d x+d} \sqrt{e-c e x}}+\frac{2 b c \sqrt{1-c^2 x^2} \log \left (1-e^{2 i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{\sqrt{c d x+d} \sqrt{e-c e x}} \]

[Out]

((-I)*c*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/(Sqrt[d + c*d*x]*Sqrt[e - c*e*x]) - ((1 - c^2*x^2)*(a + b*Arc
Sin[c*x])^2)/(x*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]) + (2*b*c*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])*Log[1 - E^((2*
I)*ArcSin[c*x])])/(Sqrt[d + c*d*x]*Sqrt[e - c*e*x]) - (I*b^2*c*Sqrt[1 - c^2*x^2]*PolyLog[2, E^((2*I)*ArcSin[c*
x])])/(Sqrt[d + c*d*x]*Sqrt[e - c*e*x])

________________________________________________________________________________________

Rubi [A]  time = 0.584327, antiderivative size = 214, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {4739, 4681, 4625, 3717, 2190, 2279, 2391} \[ -\frac{i b^2 c \sqrt{1-c^2 x^2} \text{PolyLog}\left (2,e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt{c d x+d} \sqrt{e-c e x}}-\frac{\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt{c d x+d} \sqrt{e-c e x}}-\frac{i c \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{c d x+d} \sqrt{e-c e x}}+\frac{2 b c \sqrt{1-c^2 x^2} \log \left (1-e^{2 i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{\sqrt{c d x+d} \sqrt{e-c e x}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c*x])^2/(x^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]),x]

[Out]

((-I)*c*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/(Sqrt[d + c*d*x]*Sqrt[e - c*e*x]) - ((1 - c^2*x^2)*(a + b*Arc
Sin[c*x])^2)/(x*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]) + (2*b*c*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])*Log[1 - E^((2*
I)*ArcSin[c*x])])/(Sqrt[d + c*d*x]*Sqrt[e - c*e*x]) - (I*b^2*c*Sqrt[1 - c^2*x^2]*PolyLog[2, E^((2*I)*ArcSin[c*
x])])/(Sqrt[d + c*d*x]*Sqrt[e - c*e*x])

Rule 4739

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((h_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(
q_), x_Symbol] :> Dist[((-((d^2*g)/e))^IntPart[q]*(d + e*x)^FracPart[q]*(f + g*x)^FracPart[q])/(1 - c^2*x^2)^F
racPart[q], Int[(h*x)^m*(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c, d,
e, f, g, h, m, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0]

Rule 4681

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n)/(d*f*(m + 1)), x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x
^2)^FracPart[p])/(f*(m + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSi
n[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && EqQ[m + 2*p
 + 3, 0] && NeQ[m, -1]

Rule 4625

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n/Tan[x], x], x, ArcSin[c*
x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 3717

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[(I*(c + d*x)^(m + 1))/(d*
(m + 1)), x] - Dist[2*I, Int[((c + d*x)^m*E^(2*I*k*Pi)*E^(2*I*(e + f*x)))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x)))
, x], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \frac{\left (a+b \sin ^{-1}(c x)\right )^2}{x^2 \sqrt{d+c d x} \sqrt{e-c e x}} \, dx &=\frac{\sqrt{1-c^2 x^2} \int \frac{\left (a+b \sin ^{-1}(c x)\right )^2}{x^2 \sqrt{1-c^2 x^2}} \, dx}{\sqrt{d+c d x} \sqrt{e-c e x}}\\ &=-\frac{\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt{d+c d x} \sqrt{e-c e x}}+\frac{\left (2 b c \sqrt{1-c^2 x^2}\right ) \int \frac{a+b \sin ^{-1}(c x)}{x} \, dx}{\sqrt{d+c d x} \sqrt{e-c e x}}\\ &=-\frac{\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt{d+c d x} \sqrt{e-c e x}}+\frac{\left (2 b c \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int (a+b x) \cot (x) \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt{d+c d x} \sqrt{e-c e x}}\\ &=-\frac{i c \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{d+c d x} \sqrt{e-c e x}}-\frac{\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt{d+c d x} \sqrt{e-c e x}}-\frac{\left (4 i b c \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{e^{2 i x} (a+b x)}{1-e^{2 i x}} \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt{d+c d x} \sqrt{e-c e x}}\\ &=-\frac{i c \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{d+c d x} \sqrt{e-c e x}}-\frac{\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt{d+c d x} \sqrt{e-c e x}}+\frac{2 b c \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt{d+c d x} \sqrt{e-c e x}}-\frac{\left (2 b^2 c \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \log \left (1-e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt{d+c d x} \sqrt{e-c e x}}\\ &=-\frac{i c \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{d+c d x} \sqrt{e-c e x}}-\frac{\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt{d+c d x} \sqrt{e-c e x}}+\frac{2 b c \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt{d+c d x} \sqrt{e-c e x}}+\frac{\left (i b^2 c \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{\log (1-x)}{x} \, dx,x,e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt{d+c d x} \sqrt{e-c e x}}\\ &=-\frac{i c \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{d+c d x} \sqrt{e-c e x}}-\frac{\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt{d+c d x} \sqrt{e-c e x}}+\frac{2 b c \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt{d+c d x} \sqrt{e-c e x}}-\frac{i b^2 c \sqrt{1-c^2 x^2} \text{Li}_2\left (e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt{d+c d x} \sqrt{e-c e x}}\\ \end{align*}

Mathematica [A]  time = 1.11993, size = 189, normalized size = 0.88 \[ \frac{-i b^2 c x \sqrt{1-c^2 x^2} \text{PolyLog}\left (2,e^{2 i \sin ^{-1}(c x)}\right )+a \left (a c^2 x^2-a+2 b c x \sqrt{1-c^2 x^2} \log (c x)\right )+2 b \sin ^{-1}(c x) \left (a c^2 x^2-a+b c x \sqrt{1-c^2 x^2} \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )\right )+b^2 \left (c^2 x^2-i c x \sqrt{1-c^2 x^2}-1\right ) \sin ^{-1}(c x)^2}{x \sqrt{c d x+d} \sqrt{e-c e x}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSin[c*x])^2/(x^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]),x]

[Out]

(b^2*(-1 + c^2*x^2 - I*c*x*Sqrt[1 - c^2*x^2])*ArcSin[c*x]^2 + 2*b*ArcSin[c*x]*(-a + a*c^2*x^2 + b*c*x*Sqrt[1 -
 c^2*x^2]*Log[1 - E^((2*I)*ArcSin[c*x])]) + a*(-a + a*c^2*x^2 + 2*b*c*x*Sqrt[1 - c^2*x^2]*Log[c*x]) - I*b^2*c*
x*Sqrt[1 - c^2*x^2]*PolyLog[2, E^((2*I)*ArcSin[c*x])])/(x*Sqrt[d + c*d*x]*Sqrt[e - c*e*x])

________________________________________________________________________________________

Maple [F]  time = 0.526, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( a+b\arcsin \left ( cx \right ) \right ) ^{2}}{{x}^{2}}{\frac{1}{\sqrt{cdx+d}}}{\frac{1}{\sqrt{-cex+e}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(c*x))^2/x^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x)

[Out]

int((a+b*arcsin(c*x))^2/x^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/x^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (b^{2} \arcsin \left (c x\right )^{2} + 2 \, a b \arcsin \left (c x\right ) + a^{2}\right )} \sqrt{c d x + d} \sqrt{-c e x + e}}{c^{2} d e x^{4} - d e x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/x^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x, algorithm="fricas")

[Out]

integral(-(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2)*sqrt(c*d*x + d)*sqrt(-c*e*x + e)/(c^2*d*e*x^4 - d*e*x^
2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \operatorname{asin}{\left (c x \right )}\right )^{2}}{x^{2} \sqrt{d \left (c x + 1\right )} \sqrt{- e \left (c x - 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(c*x))**2/x**2/(c*d*x+d)**(1/2)/(-c*e*x+e)**(1/2),x)

[Out]

Integral((a + b*asin(c*x))**2/(x**2*sqrt(d*(c*x + 1))*sqrt(-e*(c*x - 1))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{\sqrt{c d x + d} \sqrt{-c e x + e} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/x^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)^2/(sqrt(c*d*x + d)*sqrt(-c*e*x + e)*x^2), x)